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0. Introduction

Kuznetsov [11] (see also [12]) introduced

Kolmogorov-type construction in which he constructs a -
stationary measure O from é transition semigroup P,(x,dy)
and an excessive measure m. In fact, his theorem has other
interesting conseqguences outside of the Markovian
framework, but we do not discuss these here. While
Kuznetsov's proof is "elementary®, it is rather involved.

The purpose of this paper is to give an alternate

§E§ construction of Q, in the case of right processes. We

§§§ consider both the time homogeneous and time inhomogeneous
sﬁg cases. Our construction does not extend to cover the other
§%§ interesting cases of Kuznetsov's theorem, but our approach
Eiﬁ may yield some insight into the measures Q, and may aid the

E
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reader interested in recent articles [5,10] in which the
measure Q, has played an important role. Mitro [13] has
obtained a result similar to ours under duality hypotheses
on the underlying processes, but her construction is quite
different from ours.

We ﬁust confront squarely the complexities of the
subject soon, but first we try to introduce Qp gently to
the reader by discussing the example which ﬁotivated our
investigation. Let X = (0,8, F . X, et,Px) be a right
process on a Lusin state space (E, &) with semigroup P, and
resolvent U9, Let m be an excessive measure for X, and
assume that m is }n fact a measure potential. That is,

m = pU for some positive measure p. We can "easily”
construct Q, once we introduce the measurable space on
which Q must sit. To do this, adjoin a "birth" point a
and a “death” point b to E to obtain EE. Let W be the set
of all maps w from R to Ef so that there is a non-empty
open interval Ja(w),p(w)[ on which w is E-valued and right
continuous, w(t) = a for t ¢ a(w), and w(t) = b for

t > g(w). Let Y (w) = w(t), and let 0 = o{Y,: t € R).

For gach t € R, define a map Pe? {C > 0) »+ W by

[pt(m)](S) = Xs_t(w) if t < s and s - t < {(w)
= a if t > s

Let 0% be the image of the measure P under the map p,:

note that ot is a measure on (W,»#C). Then o = ]Rptdt.

.
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It is simple to check that

(0.1) Q(f, € dx; a < t < B} = m(dx) for every t in R; and
(002) if tl < tz € oes € tn' then
qm(c < tl'Ytl € dxl'...'ytn € dxn'tn <'p)

= M(GXI)Ptz ‘x1'dx2)coopt (xn_lgdxn)o

-t n~tn-1

The key to this construction is the fact that m is a
measure potential pU. In general, excessive measures are
not measure potentials, but they can be decomposed into the
sum of an invariant part ml and a potential part mP. The
potential part can be represented as an integral of an
entrance law (vt). This proves to be enough to imitate the
steps above. The representation mP = ];vtdt is well-known,
but we do not know where a direct proof of it can be found
in the generality we need. 1In [4]), Dynkin derives it as a
corollary to the representation of excessive measures in
terms of minimal elements. Fitzsimmons and Maisonneuve (5]
have a very nice proof using the existence of Q. It is
proved for finite m in [9]. In section 1, we give a direct
proof of the representation of mP (1.4). The decomposition
of m is summarized in Theorem (1.10). Section 2 contains a

generalization of this representation for entrance rules
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for a time inhomogeneous transition operator Pg. The main

result is Theorem (2.11). Section 3 contains the

construction of Q,. In fact, we proceed more generally and

construct the measure corresponding to an entrance rule and

X

.

- -
-

.........

e
T TN kA

g
E\
A%
?'
Al
Y
by
“
S
[y
[
3
i
A
A
L
'-‘
e
H

1\‘-$$ "‘V'ﬂhy e T N
R R R N o N A R RS T AL B S




o -

LY

—zrzzy

s ")

Ll g bl el al AN

a time-inhomogeneous transition operator Pg.

We make the following suggestion to the reader
interested only in the case of an excessive measure m and a
(temporally homogeneous) right process with semigroup P,.
After reading section one, read the interpretation of the
representation (1.107 given in the paragraph jus; below the
statement of Theorem 2.33; in particular, the form (2.34)
of (1.10). Then read section three with P§ = P ,__ for & <
t and use (1.10) - that is, (2.34) - in place of (2.33) in
the proof of Theorem 3.8.

We use what is essentially standard notation. Here
are a few examples. Let E be a set and o a class of
numerical functions on E. Then bo¥ and po¥ denote the

classes of bounded and positive functions in J¢,

respectively. If (E, &) is a measurable space, then &£ is
used to denote both the underlying o-algebra and the class
of all & -measuradble numerical functions on E. Thus, for
example, bp€ = pb& is the class of bounded, positive,

measurable functions on E. Also &* denotes the ¢-algebra
of universally measurable sets over (E,&). If y is a

measure on (E, €) and h € p&, then hy or hep denotes the
measure h(x)u(dx). If (F, F) is another measurable space
and & is a measurable mapping from (E, €) to (F,F), then
@(p) is the image of y on (F, F); that is, &(u)(n) = Yorer

u[o-l(A)] for A € &#. As usual, R denotes the reals and E t::a
@B(R) is the o-algebra of Borel subsets of R. Similarly, }

RY denotes the positive (i.e. non-negative) reals and

T
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B Borel o-algebra of .
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1. Excessive Measures of Right Processes.

Fix a U-space (E, &) (i.e. E is homeomorphic to a
universally measurable subset of a compact metric space),
and let X = (0, &, ft.xt.et.Px) be a right process on E as
described in [6]. Let (P,) and (UY) denote the semigroup

and resolvent of X, respectively.

(1.1) DEFINITION. A o-finite measure m on (E, &) is said
to be excessive for X (or Py or U9) if mPy < m for every t
> 0. (Here, mP, is the measure defined by mP,(f) =
m(P.£)).

It is well known that an excessive measure m also has
the property that mP.(f) increases o m(f) as t decreases

to zero for evefy f e p&; e.g. see ([8], (1.4)).

(1.2) DEFINITION. An entrance law for X (or Py or U9) is
a family of o-finite measures ("t)t>0 on (E, &) so that

> .
vtPs = Visg for every t > O and s o

Note that t + vt(f) is #B(R**)-measurable if £ € p€f.

The main result of this section is the theorem below
connecting an excessive measure m with an entrance law
Veo But first, we introduce the following useful
convention.

(1.3) NOTATION. Let (mi ), g be a collection of ¢-finite
measures onh (E, &) with my > my,  for every s > 0 and for

every t € R. Then there exists a unique g-finite measure =

on (E, &) so that whenever f € p& with ms(f) < » for some
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s € R, one has x(f) = 11mt0.mt(f). We write x = limt’_mt.

Also, if p and v are c-finite measures on (E, &) with

W € v, then there exists a unique o-finite measure A with

B+t A= v Wedritek"p-v.

(1.4) THEOREM. Let m be an excessive measure for X 50

that limt_”mpt = 0. Then there is a unique entrance law

-
(vy)¢,0 B0 that m = [oveldt-

PROOF. Choose £ € b& with £ > 0 and m(f) < «. Since m is
excessive, m(UJf) < = for every g > 0. Let A, be the

increasing function on ]0,«[ defined by setting
A, = -mp,UYf = -eqtf:e-qumPu(f)du.

Since At is the product of two locally bounded absolutely
continuous functions, A, is absolutely continuous on
bounded intervals. Therefore, dA, is a positive measure on
JO,=[ which is absolutely continuous with respect to
Lebesgue measure. If g € p&, define the increasing
function A.(g) on ]O,o[ by setting A (g) = -mP,(g). Note

that if m(g) < =, then .

Jodhelg) = lim, onP (g) - lim  _wP,(g) = m(g).

|
;
b
b
'
13
\
4

In what follows, O < ¢ ¢ «, and c may change from line

to line. If 0 < g < cUf, then cAy = A.lg) +
At(ch - g). 8ince both functions on the richt side of

' this last equality are increasing, it follows that

3 dAt(g) << dt. Consequently if g € & and |g| < culf,

\ '
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da,(g) defines a signed measure on JO,=[ that is absolutely
continuous with respect to Lebesgue measure, where A,(g) =
~mP,(g) for such g. Let dA.(g) = H¢(g)At with g as above
and with Ht(g) being a finite Borel measurable version of
the density. Set Eg = (u%f > 1) and

E, = {(n + 1)-1 < U9 < n-l) for n » 1. Since f~-> 0,

E= U 0B, If9c€ bé&, then IglEn| <’chf_ and so
dAt(gIEn) = Ht(glgn)dt. Let (gy) C pé be a sequence
increasing to g € b&. Then H.[(g - gk)lEnJ < Ht(glEn) and
];Ht(glEn)dt = m(glEn) < m(cudf) < - Hence we may apply

the dominated convergence theorem to conclude

'[Oli'm Ht[(g - gk)lEn]dt = l;m [oHt[(g - g)s)lzn]dt

= I;m ml{(g - gk)lE ] = 0.
n
This shows that Ht(gklEn) increases to Ht(glEn) a.e. (dt)
as k approaches infinity. By a standard result on
regularizing pseudo-kernels ([7], (4.5)) or ([2), 1X-11 and
13) there exists a bounded kernel p,:(-) from (R, B(R*)) to
(E, &) that is carried by E, so that Ht(gIE ) = p:(g) a.e.
n

(dt) for g € b €. set #

B, = I un-
t n>0"t

Then u, is a kernel from (R*, B(R*)) to (E, €). Let

g € pbé& with m(g) ¢ « and let g, = £ Then

09l
x=09"g, °

I;dht(g -g,) =mlg-g)+0

SRS



as n + «, and 80 the positive measures dA (g,) increase to

0 A
XA

an,(g). Consequently

‘0!.

aa.(g) = u (glat
for g € pb& with m(g) < = and then with one more passage
to a limit for g € le(m). Moreover m = ];gtdtl Since on
10,=[, gy, lglat = -am(Py, g) = @A (Pgg) = u (P g)at and
pt(g) < « a.e. (dt) for g € le(m), we have
”tﬁ-s‘g) = ”t‘psg) a.e. (dt). But & is countably
generated since (E, &) is a U-space, and so for each s > 0

(1.5) = p P a.e. (at).

Pt+s
Thus (pt) is a "crude” version of the desired entrance
law which we shall obtain by "regularizing" (pt) as
follows. Let L be Lebesgue measure on r*. Applying

Fubini's theorem to (1.5), we obtain

1 ds dt = O.

{beeg?BePs)
That is, there is a set T C RY with L(rc) = 0 so that for
each t in I, there is another set A(t) = At C R+ with

c
L‘At) =0and p, = B Py for every s in A, - Choose a

o

Ej sequence (t,) C r decreasing to zero so that pt(n)(Uqf) < o
5

#: for each n. (This can be done since pt(Uqf) < e a.e.).

a For s > 0, define

E&iﬁ&ﬁﬂJ
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o,
A

Note that

n
¢1.7) Ve 45 = My 4g fOT every s ¢ A(tn).
n . n
and -
+1
(1.8) * ) =yu, P, _ .
tn+1+(tn tn+1)+s tn+1 tn tn+1+

But whenever t, - t,,;, + s is in A(tn+1),

e Pt -t +s ptn+s'

_;3 ntl n "n+l

X . c c, _
,4§ Since L(A(tn) L)A(tn+l) ) = 0, we have
S5
.‘ -
s

- p P = '.l P - A.€. (ds)o
w5y th 8 thtl 4 tn+1+s

m
&; In particular, whenever 0 < g < f£,
4

4
-
N q q
uﬁ..t.' u P U g = p P - U g a.e. (ds)o
' th thel En"tnerts

e
e Since each side is finite and right continuous in s, they
o
-y agree for all s; that is,
f w'

i
.l .I
s q q

~ p, PU? = P _ U=,
2 Wy th thel tnmtnerte
:»'
N By the uniqueness theorem for potentials ([8], (1.1)), this
s implies

&

f?

N,
Lo P = P

M M -
tn 8 tn+1 tn tn+1+

e,
)
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Thus, for every s > 0, using (1.6) and (1.8),

vn - vn+1
y tats tn+1+(tn-tn+1)+s
If t > tn'
(1.9) vn n+l n+l

- = v - - = v _ .
tn+(t tn) tn+1ﬂtn tn+1)+(t tn) Fn+1+(t tn+1)

Define

ve = im v +H(t-t_)°
n n

. . n,6 _.n
If t > t, and if s > 0, then (using (1.6)) v, P_ = v, . It

follows that (vt) is an entrance law. By (1.7) and (1.9),
Ve = B, 2.6, sOm = [ov dt. ‘
To prove Ve is unique, let Y be another entrance law

with m = [y dt. Then
mP_ = [V Pgdt = [ov, . dt = [,y P.dt = YgU-
Similarly, mPg = vsU. Since mPg; < m, and m is o¢-finite,

g = vy by (181, (1.1)). 0.E.D. l

We can now give the representation of an excessive

measure which was mentioned in the introduction.

(1.10) THEOREM. Let m be an excessive measure for X.

There is a unique invariant measure ml (i.e. miPt = ml for

every t > 0) and a unigue entrance law vy 50O that

> o, W - e o . - " a
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g g P R T T T U -
) ‘h{- \. > O --.'n.‘q.. I T S R T AP I IV I AT B NI
bW G WYY v Wiy o, iy \.\ALi\ o Wiy 0 " W, W TR VS 2 -‘-’ LY '.'x-‘\-".'r' ‘t.:.‘r'."i"';"';'!.- vl “J"'"' 'h.' e T o
F VTN PN LI TSR A .:.';.'t.'z‘ﬂ» Y




mATRTwYTY

wy

it e i
RN b bR
TR SR

l"z.j‘

4

o et
A a LY t’

-
]

Yl
TN

-,
“ & s e
s

.I."l

I
L4

TR W WOV T T W OO TR T ORIy

A Ak P40 SRR Gl 08 il Gl e B ava 4 ie aeg

This is an immediate consequence of Theorem 1.4 since
it is well-xnown and easy to check that mP = lim  _mP,
defines an excessive measure satisfying the hypothesis of
(1.4) and that ml = m - mP defines an invariant measure.

Also see the discussion following the statement of Theorem

e d

2,33.
2. Representing an entrance rule.

Fix a U-space (E, £€). For each s and t in R with
s < t and for each x in E, let P(s,x; t,dy) be a sub-
probability measure on (E, &). For each s < t, define

PEf(x) = [ P(s,x; t,dy)f(y)

whenever £ € bé&; Pi is called a transition operator if

(2.1), (2.2), and (2.3) are satisfied:

(2.1) (s,t,x) » Pf(x) is B(R) x B(R) x &
measurable for each f € bé&.

(2.2) PE(PSf) = ng whenever s < t < u and f €¢ bf.

(2.3) For each s € R, Pﬁ_l increases to 1

as t decreases to s.

Ve also need a type of "right” hypothesis.

A A A A A A g gep Aid oih cda 2 ah i i apaned o A
T Nafia ane o
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(2.4) DEFINITION. A function ht(x) is called an exit rule

N .
i if hy € p&€* for every t and if, for each s, P{ht increases

2 tp hy as t decreases to s.

REMARKS. (i) The argument in Dynkin ([3), Lemma (5.1))

3
N

X c ~

% shows that a finite exit rule must be #B(R) x &*

i measurable. Standard arguments show that any entrance rule
5 .
"‘s is an increasing limit of bounded entrance rules, so every
;3: entrance rule must be @&(R) x & *-measurable.

o (ii) Note that h, is an exit rule provided the
2
ﬁ:‘ function B(t,x) = ht(x) is excessive for the homogenous
Q‘.: :
{L:"‘ space-time semigroup
_;, Tt((r,x); ds x dy) = er+t(ds)P(r.x: t + r,dy).
” The last conditic~ we assume for Pg is the following.
!
o
::n' .
J.u:. (2.5) For every bounded continuous function f on E and
R 8 =

y : every bounded exit rule hy., limt+spt(ﬂ‘t) fhs.

el

8

:“,: I1f T, is a right semigroup of a right process [6], then

(2.5) is satisfied. 1In particular, if Pg = Py g is a time-

i} homogeneous right semigroup of a right process, then (2.5)
G'Lj

1] hOIGBO

. -
h{s '
N (2.6) NOTATION. I1f v is a o-finite measure on (E,#), then
W13

:.:0_ vP: denotes the measure defined by vP:(f) = v(P:f).

o

<1

-

*.3 (2.7) DEFINITION. (i) An entrance rule for (Pg) is a

‘

" family of o-finite measures (.Vt)ten on (E, &) so that for
i

:é:“ T TS 0 Lol o £ G L £ Ut ot o o
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each t in R, v.P: increases to Ve as 8 increases to t.
(ii) Let =« ¢ 8 ¢ o, An entrance law at s is an

= t
entrance rule "t) so that Ve 0O if t ¢ 8 and "tpu = v,

whenever s ¢ t < u.

(2.8) REMARK. One _ may apply an argument similay to that
used in Dynkin ([3), Lemma (5.1)) to show that whenever
("t) is an entrance rule t » vt(f) is @& (R)-measurable for

f ¢ p&. This result may also be obtained as a corollary

of Theorem (2.33) below.

(2.9) LEMMA. Let ("t) be an entrance rule for (P:). For

each t € R, there is a function ft(x) on E so that

0 < £f,.(x) < 1, vt(ft) €1 and (t,x) » ft_(x) is #B(R) x &

measurable.

PROOF. For each t, v, is o-finite, and we may choose an
& -measurable function k, with 0 < k4 < 1 and "t(kt) <1l.
For each rational number r, choose a, > 0 so that

z a_ <1, and define

reQ r

(2.10) fo(x) = Irse,reqQ arP:fkr(x)

By (2.1), (t,x) +» £.(x) is $B(R) x &-measurable, and f,(x)

. ov
<zr€0ar<1 Moreover,

"t(ft) = zr>tarvtp:kr < :r>tar"r(kr) <1

since "r(kr) < 1. Recalling (2.3) and the fact that k. >

0, we see that Pf.‘kr(x) > O for some rational r » t.
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Therefore ft(x) > 0. Q.E.D.

(2.11) THEOREM. Let (v, ) be an entrance rule for (P}) so

that lims_’_.v.!’: = 0 for each t ¢ R. Then there is a

finite measure ¢ on (R, B(R)) and a collection of measures

-

-3
("t)s.ten sO0 that

t)te R is an entrance law at

{2.12) for each s € R, vs s (v

s for (P}):
(2.13) for each £ € p&, (s,t) » vi(£) is

B(R) x B(R) - measurable:

(2.14) for each t € R, v, = [pvy ¢(as).

In addition, there is a strictly positive function gt(x) in

B(R) x' & so that v:(gt) < o for every t and s.

PROOF. Step l: Reducing the Problem.

For s < t, define 0f = " (t"8)p%, and set , = &%y . one

t
can easily check that Q: is a transition operator and (pt)

Q: = 0, Thus,

(ps) and (0f) satisfy the hypotheses of the theorem and

is an entrance rule for (0f) with lm____n_

have the following extra property:
o g o -(t-8)
(2.15) ]sotl dt < jse dt = 1,

We now observe that it suffices to prove the theorem for

(bg) and (0§). For suppose we can produce a family of
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entrance lavs (p') E (p:) for (Qg) and a measure ¢ so that

Be = Ipzo(ds). Set v: - etp:. Then v, = etut = Iv:o(ds).

st t s u-t.t u s
If 8 <t <u, then v.P = epe 0 = ey,

devote our attention to proving the theorem for (p_) and
bg

s ]
= e We now

s
(Qt)f |
Let (fy) be the functions described in (2.9) relative
to (P§), and define ,
- &
(2.16) g, = [ Qcf at.

Then g4 > O, (s.x) + g (x) is B(R) x & -measurable, and,

since ft <1,

- 8
g, ¢ [g0,1 at < 1.

Also, since vt(ft) <1,

(2.17) p_(g,) = [ou Q¢f.dt < [Te”tv (£)at < e7® < o

(2.18) u (£,) < e t.

If s < t, then

o t L -
o f du = [0 f du < g,

8 8
(2.19) 0.9, = Q. f,0,f,

and as t decreases to s, Qf,_gt increases to gg.
Consequently, g, is an exit rule for (Qg). If one defines
~ - ~ ~8
Qz(x,dy) = gg(x) log(x.dy)gt(y) and y, = g u,, then O  is a

transition operator and | = (;t) is an entrance rule for

(6:) which satisfies 3 (1) <= for all t. This additional




reduction does not seem to be particularly useful in our

. construction, and so we shall not use it.

Step 2: Constructing ¢.

For each t in R and f € pf€, define an increasing function

on J-=,t[ by setting ~
(2.20) A(t,£:8) = p_0p(£)

Note that lims*tA(t,f;s) = pt(f) and lims_’_.A(t.f:s) =0,
provided pt(f) <=, If ut(f) < », then the increasing
function A(t,f:;s) is the distribution function of the
measure «(t,f)(ds) = a.A(t,f:;8) on J-«,t[. Note that
A(t,£}(R) = p (f). If 0 < £< g, then W(t,g) = A(t,f)
+ A(t, gy - £), s0 A(t,f) << #(t,g,). We let o =
.l(t.gt), and we observe that L is a finite measure on
l-=,t[ since p (g,) < e t.

Note that uf(u,£,)(R) = y (£,) < e by (2.18) and
that u + & (u,f,)(h) is B(R)-measurable whenever

hepe&. Set

(2.21) ¢ = J__A(u, £ )au.

Since «f(u,f,) is ¢ rried by J-=,ul,
o(lt,=[) = )  #(u, £ )([t,<[)au

< I:d(u,fu)(k)du <et.

-}
+

LEoe oo



Therefore, ¢ is a Radon measure. (We shall observe at the
end of the proof that ¢ can be replaced with a finite
measure as promised.) From the definitions of g, and beo

J; have

‘t = (!‘td(u'fu)du)ll'.,t[ € ¢ -~
Therefore, there is a function pt(s) so that Qt(ds) =
pt(s)o(ds) with 0 < pt(s) < 1 and pt(B) =0 if t < s.
Since t » psQ:gt is Borel measurable on Js,=[, Py may be

chosen jointly measurable in (s,t) ([2]), v.T.58).

Step 3: Disintegrating (¢, f).

From Step 2 and ([2], V-T.58), we know there is a density

a(t,f:8) which is jointly measurable in (s,t), so that
oA(t,£)(ds) = alt,f:8)0, (as)

whenever 0 ¢ £ « cgt. (Here c is any positive constant.)
1f |£] < cgy, then W (t,£)(ds) = d_p 0p(f) defines a signed
measure which is absolutely continuous with respect to LD
Hence #(t,f)(ds) = a(t,f;s)¢ (ds) whenever |£] < cg,.

(The rest of this paragraph is a kernel construction
analogous to the one in the first paragraph of (1.4).) Let
Eg = {9, 2 1} and E, = {(n + 1)"1 < gt-< n"l). i1Iffepé,

then

.d(t,flEn)(;!s) = alt,fl, :sNt(ds)
n




G
since lfl < lf!-(n + l)gt on E,. Suppose “‘k) Cbeé is a

‘.ﬁ‘ sequence of functions decreasing to zero. Then if

: \ D € @B(R),

;:"‘ - .

as | J(tuhklgn) (D) < o‘(t:hklsn)(n) = pt(hklﬂn)'

w

. and this last term goes to zero as k increases to infinity
h) .

?& since hy < th i1 and “t(En) < (n + l)pt(gt) < »,

ot Consequently, if (h,) C b& is a sequence of positive

0%

" functions increasing to h, then a(t,hklz(n):-) increases to
“"\

'gz “(t'hlz(n)") a.e..(ot). By a standard result on kernels
Ry ([7].(4.5)), there exists a bounded kernel K{(s,dx) from
:,. (J-=,t[, B()-=,t[) to (E, &) which is carried by E, so that
o

::.?:? . for each £ € b&, (1) (s,t) » Ki(s,£) is B(R) x B(R)-
l"l_ .

5& measurable, and (ii) u(t.flE(n);o) = K:(-,f) a.e. (¢.).

Y Set

W

i:.'.

"2:& Kele,£) = £ Ki(s,f)

5N

f"} Let £ € b€ with pt(f) < », and let

n

p3 h, = ¢ 1, f.

) n k=0

3 "

4
é Then «(t,f - h )(R) < pt(f) < », and it follows that
4&‘ a(t.hn:-) increases to a(t,f;e) a.e. (ot). Hence

o

ey

% A(t,£f)(as) = Kt(s'f”t(ds)

w-,;;

whenever pt(f) < o,

Ifs ¢t ¢,

- N P o e L N N ).'-'.s-‘.'-’.-. ...................
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A(u,f38) = psQ:f = usQiQ:f = A(t.Q\t,f:s).

b B
[}

4

g0 «f(u,f) = d(t,ogf) on J-w,t[. This implies

\ t

~: Ku(s,f)ou(ds) - Kt(s.ouf)ot(ds) on J-«,t[ or

\- b

2 -

) py(8)K (g, £)e(as) = pt(s)Kt(S.sz)o(ds) on J-e,t[.

& Since ¢ is a Radon measure, we conclude

N, ¢

3 (2.22) p (8)K (8,f) = p (5)K (5,0,f) a.e. (¢) ins

o on [-=,t[.

%

4

‘; Set .

.Y

"

N (2.23) Ae(£) = p (s)K (5, £)

X

b, ‘ Then (s,t) » Az(f) is B(R) x B(R)-measurable for every
W f ¢ p&, and A:= 0 if t ¢ s. Now (2.22) implies that for
2y :

i s = 1B t - s
:;: t < u, xu(f) At(Quf) a.e. (¢) in s on )-=,t[. since L9
( and x: are o-finite measures, we have that if t < u,

[N

b s s .t .

‘:E (2.24) A, = xtQu a.e (4) in s on J-o,t[. ﬁ
_ Also,

2

v,

v,

7 8

; Ilté(ds) = IJ--,t["t(S)Kt(s”M(ds)

,..: = IJ_.'t[Kt(so')ot(ds) = (t,*)(R) = I.lt(‘)-

------ -
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So u:) is a "crude”™ version of the desired family (u:).

Step 4: Regularizing (1:).

By the results above and (2.17),

fAS(g )elds) = y lg,) < et T

’

Thus, for each t, x:(gt) < = a.e. (¢). In partimlar, if L
denotes Lebesgue measure on R, and if
r.a

r r
n= ((r'u) t r €, hu(gu) < ‘o)\t = lth

a.e. L in t on (ul.)}l

then by (2.24),
J2o 120 nStrow1 g, elar)Lian) = o.

By Fubini's theorem and the change of variables w + u + r,

we may rewrite this as
J2. g nlr,u + r)L(au)elar) = o.

Thus there is a set ' C R with o(rc) = 0 and so that if

r €r, then

(2.25) x§+r(gu+r) < o a.e. (L) on {u > 0}

e e ;&‘5;:}‘:3«;%1&}:}:}:‘



u+r

(2026) lt = xr o a.e. (L x L) on

t utr-t

{{(t,u) : u >0, t>u+r).

From (2.25) and (2.26), we know there is a sequence (u,)

-

decreasing to zero so that

u +r :
r r n
(2.27) Ae lun+rot a.e. (L) on {t : t > u + r)
r
(2.28) L +r(gu +r) < -
n n

set s, = s{n) = u_ + r, and note that s_,2 depends measurably

n n n

on r. For each n, (2.27) implies there is a set

A C ]sn.-[ of full ﬁebesgue measure so that

r_,r
(2.29) A L. Qt

n
t . for all t € An'

Define

[
n
nOt for t > i

n r
=ls

(2.30) Te

Note that y" = AT for every t in A . If t > s_> s
Ye t n n n+l

8
o =g oM
n+l
But if t € An‘W An+1' then
5 s
n_,r,n_.r _.r n+l
(2.31) Ye = Mg O A A, @ .

n n+l




)

Since g, is an exit rule for Q:. it follows from (2.5) that
e s sn+l
§ Qtn(fgt) and 0 (fg,) are right continuous in t on
)
” ]sn,.[ whenever £ is bounded and continuous. Since
L((Aﬁ v A:-bl )N)s_,=[) = 0, we conclude that
s
s - 5 ~
> r n r n+l
-3 . AT O = ) Q for every t > s, > 8 .4
’ ®n t Shel © n n+l
f Thus for each t > r € I, the limit |
o

r r . °n

& (2.32) be = lmy, g 0
s
-\'J r
™ exists, and for each r, (p;) is a (0g)-entrance law at r.
-.: I1If r { r, set p: = 0 for all t. By (2.31), for every r ¢ T
y .
r_.,r r_.r \
- and t € Uy N A, B = A 8oy, =%, a.e. (L) in t on
[ Jr,=[. Let & = {(r,t) : p: * li]. Then

{ [ o(r,t)L(dt)e(ar) = O. Applying Fubini's theorem, we
§ see there is a set G C R with L(G®) = 0 so that for every t
" r r . r
. ~ in G, pg = Ay a.e. (¢). since [ A ¢(dr) = p., we have
j:_ j uio(dr) = By for every t in G. Fix t € R and choose a
2; sequence (t,) C G increasing to t. Then
- r r
2 pe = J pe olar) = ue olar),
; n n -"tn[ n
R
j so
2 t t
ol n r,.n r
TR P | u, Q. ¢ldr) = | peo(dr).
¥ tnt et [ %0t Yoot LF
5 Since (y,) is an entrance rule Qt(n) increases to
% Pt * ¥e(n)-e He
-4‘ as t, increases to t. The integral increases to |
I I

A R T e N e
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ol " »'
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. ¢(2) < =, Set ;t = z(s) ke an

I t[u:o(dr) = fugelar),

and we have shown that y = ]p:o(dr). Now we show that

“:(gt) < ® for.every teand r. Ifr ‘ Ir., this is clear

9
t

in t on Jr,=[. By (2.25), ,,:(gt) < = a.e. (L). In

since p: = 0. Let r € I' and recall that p: = ), _a.e. (L)

particular, there is a sequence (t(n)) decreasing to r with
“:(n)(gtkn)) ¢ . But if u > t(n), p:(gu) = p:(n)(Q:(n)gu)
< p:(n)(gt(n)) < = since g, is a (0§)-exit rule.

 This essentially finishes the proof: we have produced
the desired (p:). All that remains is to observe that we
can replace ¢ with a finite measure if desired. To do

this, choose a strictly positive function z on R so that
-1l s 4

9(ds) = z(s)e¢(ds) Q.E.D.

REMARK. Theorem (1.4) can be obtained by carefully
checking through the proof of (2.11). It does not seem to
be an immediate corollary of the statement of (2.11).

‘We can now give the representation of entrance rules.

teR
(P8). Then for each s, -= ¢ 5 < =, there exists an
t

(2.33) THEOREM. Let y = (vt) be an entrance rule for

entrance law at s, vs = (v:) and a finite measure ¢ on R so

that

(1) (s, t) » v:(f) is B(R) x @(R)-measurable; and

(i1) Ve = v;. + ]szo(ds) for every t € R.
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Before we give the proof, let us re-interpret the time
homogeneous situation (1.10) in this context. If we set

= m for every t, and P§ = P,_., then v_ is an entrance

rule for P:. Set v;' = mi for every t and for each s € R,

set v: = beg if t > s, v: = 0 if t ¢ s. In this case, we

-~

may take o(dt) = dt -to obtain

(2.34) m=y, "~

¢ * IR V:Q(ds).

PROOF of (2.33). By definition, the measures vng decrease

as s decreases to -«. For each t, define

Be = limS*_stPz. Then p, is a o-finite measure with
Be € Veo Let £ € p€ with vt(f) < »; then for s < t,
s roSe _ 13 ro _
psPtf = limr*_oersPtf llmr*_ovrPtf pt(f),
SO p = (pt)teR is an entrance law at -«. For each t € R,
My = Ve T By is a o-finite measure and A\ = (kt) is an
. s
entrance rule such that llms*_ohspt = 0. Apply Theorem

(2.11) to A and set vy = = p to obtain

- 8
Ve By A = ve 4 ]th¢(ds).
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3. Constructing the measures.

¥§ .
%j In this section, E denotes a Lusin topological space
?: w;th Borel field &€ (i.e. E is homeomorphic to a Borel
E- subset of a compact metric space). In what follows, it

; would suffice to assume that E is a cosouslin metrizable

? space, but we leave such an extension to the interested
YE reader. Fix a transition operator (PE) on (E, &)
satisfying (2.1), (2.2), (2.3) and (2.5). In order to

- state our last assumption on (Pg), we need to introduce

f some notation.
"; Let b be a point not in E, and set Ep = E u {b}.
‘! Topologize Ep, so that E has its original topology and b is
E: isolated in E,. Then Ej is -a Lusin topological space and
',. the trace of its Borel field &, on E is &. We adopt the
. usual convention that a numerical function £ on E is
?. extended to E, by setting f(b) = 0. For -= < r < =, let W,
-. denote the set of all right continuous maps from ]Jr,e[ to
~— Ep, with b as cemetery. If t > r and w € Wer let Yt(w) =

% w{t). Set ‘Qr = o{Yt : t > r), and set g(w) =
,5 inf{t : w(t) = b). We now state our last assumption on
6 (Pi);
;E (3.1) ASSUMPTION. For each x € E and r € R, there exists
’ a probability Px,r on (W.,%.) so that if r < t) <ty < ...
E <t then

2
i Px,r(ytl € le""'Ytn € dypet, < B)

5 ty th-1

; = PEl(x,dyl)Ptz(Ylde2)...Ptn (Yn-18¥,)




.....

)

(3.2) REMARKS (i) By (2.3), Pl decreases tol as t
(t <g) =1. Thus P is

-

2
Knd
.

[ 4
R.r xit

carried by (r < p}. It also follows from (3.1) that

decreases to s, 80O limurp

,\
S >
SRR
b b 2 )

-

x + P, r(l-‘) is & -measurable whenever F € Ur.
L4

o

3,.. (ii) If the space-time semigroup defined in Sec. 2 is
.'$ .

] . ~

R the semigroup of a right process on R x E, then (3.1)

)

holds. In particular, if P§ = P, ., where (P,) is the

t( o .

‘ ) ;

! ! semigroup of a right process on E, then (3.1) holds.

I

Wa t =

et (iii) Let r ¢ R, and set W (wew ; lim“rw(s)

. exists in Eb}. In the usual set up for right continuous
'\

',', strong Markov processes, one obtains the measure P, .

?2 ’

i concentrated on Wy. We do not need this stronger

‘ assumption here: (3.1) will suffice.

o :
2N (iv) Since E, is a Lusin space, it follows easily
AN

k- from IV-19 of [1] that (W,., ¥,) is a U-space. Ve need this
A fact below.
:_.;
:*, The usual result on constructing measures via inverse
¥ 'ui M

no

;,v, limits is stated for probabilities. Here we need a version
f,’ which will work for o-finite measures. We state it here;
L 2
?C\i its proof is given at the end of this section. First,

e

' recall the definition.

.::.:I;: (3.3) DEFINITION. Let (F_, yn)ml be U-spaces and let
o

" P, t Fn4y * Fp be & n+1/ F p-measurable. The inverse limit
AT
;t (F, F) of (F,, F,.p,) is the subset of Ny, 1 F consisting of
E those x = (x,) with pp(x.,,) = x, for each k > 1 and
Ly
WY : F= °(qk : k > 1), where gy is the natural projection q, :
Al
;:E:E? (xn) > xko
‘-:o:l:r
:o'izo
w‘!‘a.
o

oy

@h
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(3.4) THEOREM. Let (F,, &) ., be U-spaces and let p,

Fn+y * Fp be Fpny)/ Fp-measurable. For each n, let p be a

measure on (F,, &,) so that p (y ,.) = p . Assume y, is o-

Y]
n
finite. Then there exists a unigue o¢-finite measure y on

(F, F) so that qn(u) = u for each n > 1.

The next result is the basic step in our construction.

(3.5) PROPOSITION. Let v = (vt) be an entrance law at r,

-= ¢ r ¢ ». Then there exists a o-finite measure Q on

(Wr,ﬁr) so that O(p = r) = 0 and if r < t) < ... <t

then
(3.6) Q(Ytl € dyl'...'ytn € dyn, tn < B)
t t
- 1 n-1
vtl(dyl)Ptz(yl,dyz) ces ptn (yn_l,dyn).

Note that B > r on W,.. The uniqueness of Q will

follow from the main Theorem (3.8) of this section.

PROOF. Let (s,) be a sequence of numbers which strictly
decreases to r. For the moment, fix kX > 1, and for n > k,
set Xyl = We(n) N (sk < B}. Since a Borel subspace of a U-
space is a U-space, it follows that Ky is a U-space, and
its Borel o-algebra ¥@D" is the trace of €g(n) ON kyn,
For n > k, let p, kyntl | kyn by restriction; that is,

pw(t) = w(t) for t > s, . Note that the image of Xu™!,

n.
Pn(kwm'l) is not all of Xw". 1In fact, it is the set
¥i(n) N {8, < B) defined in (3.2iii). But p, is

kgntl KN pneagurable, and it is clear that We N {e, < )

may be identified with the inverse limit of

o N T TR T e S o O L L L e TR P e C TR S R
----- Lok R T D S e A L S ST R O PRV |
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(WP, X P,p ),y In fact, qu(W, N (s, . < 8)) = p(un*)),
where q, is the map from W, to Wg(n) defined bty
restriction. For each n > k, define k()"‘ on (“H"."s") by
setting

k n =.' . -
(3o7) Q (F) !vs(n)(dx)px,s(n)(f“sk < B)o
One may check that pn(kon"'l) = KoM gince v is an entrance
law. Let £, > O with vs(k)(fk) < ®., Then fk"s(k)) > 0 on
Keok+1 knak+l
wiTh, and TQTTE(Yg(x))) < v (yy(£,) < =. Therefore,
ka'”‘ is o-finite. Let kﬂr be the trace of € on
W, N {sk < g}. By (3.4), there exists a o-finite measure
X0 on (W, N (s, < B}, kgr) so that qn(kQ) = ko? for
n > k. We now regarq ko as a measure on W, carried by

(sk < 8}. Set 80 = =, and for k A> 1, let kO =

X
lis(k)<pes(k-1))° @ X>1 k

finite measure since each term in the sum is ¢g-finite and

Then set Q = ¢ Q. %Then Q is a o-

they are carried by disjoint sets. If r < tl € eee € 8,

then

k
= I, Q(Ytl € dyl""'Ytn € dy ,t, < B <5 ;38> 5y

Since the s, decrease to r, there is an integer N so that

sy < 4. Since the event kan o {Ytl € dyl, ....Ytn € dyp,,

kUN. we may rewrite the sum as

tn<a<sk-1=a>sk}e
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k N,k _n
:blo(a)

= Toa Ve ) (9%)P g (n) (Ye, € OYpeeeer¥, € dyy,

t, <8 <8531 B> 5) i

-

= IVS(N)(GX)PX,S(N) (Ytl € dyl'.."ytn € dyﬂ_:tn" p)
t t
1 n-1

since Ve is an entrance law. Finally, observe that
0(8 = r) = O because ,Q is carried by {s, < B).

Now we come to the main result. Let a be another
point not in Ey. Adjoin a as an isolated point to E, to
obtain the Lusin space Ef with Borel field €§. Let W be
the set of all maps w from R to Ef so that there is a non-
void open interval Ja(w),p(w)l on which w is E-valued and
right continuous, w(t) = a for t ¢ a(w) and w(t) = b for
t > b. (Note that for each r, -=. < r < », W N{g > r} may

be identified with WN {(a =r)}). Ifw € W, let Yt(w) =
w(t),.xo = a{Yt : tE€ER).

(3.8) THEOREM. Let v = (vt)ten be an entrance rule.

Then there exists a unigue measure Ov on (w,.#°) s0 that if

tl < LI N ] < tn,

(3.9) Qv(u < t.l'Yt € (!yl,...,Yt € dyn,tn < B)

1l n

t

t
1 n-1
= th(dyl)Ptz(ylodyz) cesn ptn (yn_lodyn)O
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Moreover, chig o-finite.

REMARK. Note that if Q i{s any measure satisfying (3.9),
then 0 = Qv and Q is o-finite. 1t is not necessary to

verify that Q is o-finite a priori.

PROOF. For each rational r, we may choose a decomposition

of E, (G C J.so that vr(Grk) < o, since Ve is o-

rk’k)l
finite. Let v®, -= ¢ 8 ¢ = be the entrance laws in the
representation (2.33). Recall from the statement of
Theorem (2.11) and (2.9) that there is a function hy(x) > 0
in B#(R) x & so that v:(ht) < » for all s and t. Order '
the collection of sets {Grkr\{x < hr < 2 +1): 250,

k > 1) into a sequence (E_ ), ., so that LJ;=1Erk = E,
vr(Erk) < » and v:(Erk) < « for every k and for every

g € [-=,o[. Let Wy = {wew: Yr(w) € Er Since

k}'
Ex N Epy = $if k ¢ j, W N Wy = ¢ if x # j. Because
Ja(w),p(w)[ is non-void for each w € W, one has

Urek»1%r,x = ¥

STEP 1. Unigueness.

Let Q and P be two measures on (W,JVO) for wvhich (3.9)
holds. Then Q(Wyy) = vr(Erk) = P(Wy ). Let Qpy and Py be
the restrictions of Q and P to wrk. Then Qrx and Py are
finite measures on Wp,. Moreover, we have from (3.9) that

Otk(F) = Prk(p) whenever F is of the form

(3.10) Fo=ny,f50Y, ,
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for t; ... € t., (fj) C b€, n > 1. Buch functions
constitute a multiplication - stable vector space whose
regtriction to W,y generates the trace of x° on |
because (Yt = b) N Wy is empty if t < r and (Yt = a) N Wgy
is empty if t > r. Thus we have Q. = P, . It follows

-

that Q@ = P.
STEP 2. Existence.

Let 0% be the o-finite measure on (W , ¥ ;) carried by
{s < g} constructed from v® in Proposition (3.5). For each

s, -» < 8§ ¢ », define maps gqg: W N {s < B) » W by setting
s s

qsw(t) = w(t) if t > s

= a if t < s.

Note that aeq_ = & and Boqgg = . Let Q@ = q.(0f). Then
€0 is a measure on (w,.x°) carried by {(a = s}. If t; < ...

<t then from (3.6) we have

- v® (day. )P,y .dy,) p.n"1 )
ve (dy )P " (yy.dy,) «oo Py “lyp gedyp),
1 2 n
and note that this is zero if t; < s. 1In particular,
sQ(er) = v:(Erk) ¢ ». Thus each 50 is o-finite.
Next, we claim that s + 5Q(F) is Borel measurable for
each F € #0. 1In view of the above and by "disjointing”

the W, , it suffices to prove this for each s + SQ(F N W)

S S T S S Y ST .
) ‘h W -...\‘\ o L Lt LN e L e T .,
*..:.)M).\-ﬁ\_h % :\{‘-‘:\'A x'f-.‘ﬁx'?-:'{-.*\-‘:-('~,¢?



bodid Bt g

h an(X)o (Here, X = (xk))o Since hn+1(xn+1) =

S T PO T TR

Rl ki At ath i e kil el i o bn A aCaf Al o 1) s g  lh® dag s da. aue g st liat ARk Sas Aa) ol

with F of the form (3.10). But for such F,

. t, ot t,
(3.22) ®a(F) = [£, (x )Ptzszt3f3 cos P‘n le (xl)v (dxl).

Note that this expression is zero if s > t, as it should be

since « = 8 almost surely 80, and that it is Borel
measurable in s. Consequently, so is s » SQ(F) ‘for all

F ¢ #0, Finally, define Qv on Jfo by setting
(3.13) o (F) = ““o(F) + [, ®0(F)e(as)

for F € x>0, Using (3.12) and (2.33), it is immediate that

(3.9) holds for Qv' Moreover, QV(W ) = vr(Erk) < ®, S0 Qv

rk
is o-finite. This establishes the existence of Qv. Q.E.D.

PROOF OF THEOREM (3.4).

Let h; be finite and strictly positive on F; with
“l(hl) = 1. Define inductively h ., = h e p, for n > 1.

Then h, € F,, h, > O on F,, and pn(hn) = py(h;) =1 for

each n. Let vn = hnpn. Then v is a probability on

(Fp. 3n), and one easily checks that Pn(" Hence

n+1) = Vp
by (I11-53, [1]), there exists a unique probability v on

(F, F) with y_ = qn(v). Define h on F by h(x) = h,(x,) =

n

h,e Pn("n-'-l) = h,(x,), h is well-defined, h € &, and h >
O. Let p = h-lv. Then y is o-finite, and one readily |
checks that qn(p) = p,. Finally, the uniqueness of y

follows from the uniqueness of v = hj. Q.E.D.
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